The carbohydrate-binding domain on galectin-1 is more extensive for a complex glycan than for simple saccharides: implications for galectin–glycan interactions at the cell surface
نویسندگان
چکیده
gal-1 (galectin-1) mediates cell-cell and cell-extracellular matrix adhesion, essentially by interacting with beta-galactoside-containing glycans of cell-surface glycoconjugates. Although most structural studies with gal-1 have investigated its binding to simple carbohydrates, in particular lactose and N-acetyl-lactosamine, this view is limited, because gal-1 functions at the cell surface by interacting with more complex glycans that are heterogeneous in size and composition. In the present study we used NMR spectroscopy to investigate the interaction of human gal-1 with a large (120 kDa) complex glycan, GRG (galactorhamnogalacturonate glycan), that contains non-randomly distributed mostly terminal beta(1-->4)-linked galactose side chains. We used 15N-1H-HSQC (heteronuclear single quantum coherence) NMR experiments with 15N-enriched gal-1 to identify the GRG-binding region on gal-1 and found that this region covers a large surface area on gal-1 that includes the quintessential lactose-binding site and runs from that site through a broad valley or cleft towards the dimer interface. HSQC and pulsed-field-gradient NMR diffusion experiments also show that gal-1 binds GRG with a gal-1:GRG stoichiometry of about 5:1 (or 6:1) and with average macroscopic and microscopic equilibrium dissociation constants (Kd) of 8 x 10(-6) M and 40 x 10(-6) M (or 48 x 10(-6) M) respectively, indicating stronger binding than to lactose (Kd=520 x 10(-6) M). Although gal-1 may bind GRG in various ways, the glycan can be competed for by lactose, suggesting that there is one major mode of interaction. Furthermore, even though terminal motifs on GRG are Gal-beta(1-->4)-Gal rather than the traditional Gal-beta(1-->4)-Glc/GlcNAc (where GlcNAc is N-acetylglucosamine), we show that the disaccharide Gal-beta(1-->4)-Gal can bind gal-1 at the lactose-binding domain. In addition, gal-1 binding to GRG disrupts inter-glycan interactions and decreases glycan-mediated solution viscosity, a glycan decongestion effect that may help explain why gal-1 promotes membrane fluidity and lateral diffusion of glycoconjugates within cell membranes. Overall, our results provide an insight into the function of galectin in situ and have potential significant biological consequences.
منابع مشابه
Glycan Dependence of Galectin-3 Self-Association Properties
Human Galectin-3 is found in the nucleus, the cytoplasm and at the cell surface. This lectin is constituted of two domains: an unfolded N-terminal domain and a C-terminal Carbohydrate Recognition Domain (CRD). There are still uncertainties about the relationship between the quaternary structure of Galectin-3 and its carbohydrate binding properties. Two types of self-association have been descri...
متن کاملThe N-terminal carbohydrate recognition domain of galectin-8 recognizes specific glycosphingolipids with high affinity.
Galectin-8 is a member of the galectin family and has two tandem repeated carbohydrate recognition domains (CRDs). We determined the binding specificities of galectin-8 and its two CRDs for oligosaccharides and glycosphingolipids using ELISA and surface plasmon resonance assays. Galectin-8 had much higher affinity for 3'-O-sulfated or 3'-O-sialylated lactose and a Lewis x-containing glycan than...
متن کاملGlycobiology simplified: diverse roles of glycan recognition in inflammation.
Glycans and complementary glycan-binding proteins are essential components in the language of cell-cell interactions in immunity. The study of glycan function is the purview of glycobiology, which has often been presented as an unusually complex discipline. In fact, the human glycome, composed of all of its glycans, is built primarily from only 9 building blocks that are combined by enzymes (wr...
متن کاملGalectin multimerization and lattice formation are regulated by linker region structure.
Galectins regulate cellular functions by binding to glycan ligands on cell surface glycoprotein receptors. Prototype galectins, such as galectin-1, are one carbohydrate recognition domain (CRD) monomers that noncovalently dimerize, whereas tandem-repeat galectins, such as galectin-9, have two non-identical CRDs connected by a linker domain. Dimerization of prototype galectins, or both CRDs in t...
متن کاملInvestigating Cell Surface Galectin-Mediated Cross-Linking on Glycoengineered Cells
The galectin family of glycan-binding proteins is thought to mediate many cellular processes by oligomerizing cell surface glycoproteins and glycolipids into higher-order aggregates. This hypothesis reflects the known oligomeric states of the galectins themselves and their binding properties with multivalent ligands in vitro, but direct evidence of their ability to cross-link ligands on a cell ...
متن کامل